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With the advent of reimbursability of MRS and of (semi-)automatic data acquisition, data processing 
and quantitation, the interest in clinical uses of MRS has increased and the threshold to really use 
MRS in the clinic has been drastically lowered for non-experts. Unfortunately, MRS is not like MRI, 
where many artifacts are easy to recognize and even laymen can judge the quality of an image 
reasonably well. In MRS, pitfalls are ubiquitous, but not necessarily eye-catching. Even worse, there 
is no agreement on what exactly is a good spectrum among experts. And the most common answer of 
experts to the question of how they judge the quality of their spectra, is: “it depends”. And indeed it 
does depend on whether we are talking about single voxel or CSI data, about long or short TE spectra, 
about whether we consider near-normal spectra or widely pathologic spectra, whether they are spectra 
of the brain, or another organ, etc. Hence, I will try to give a personal view of the factors that should 
be considered when judging the quality and usability of a 1H-MR spectrum1. I will first list commonly 
used quality criteria, then mention some major factors that affect quality and reliability of spectra, 
present examples of artifacts, and finally conclude with remarks on how to judge individual data sets 
and on how to present results.  
Quality Criteria 
Signal to noise ratio (SNR): The SNR is often defined in 
frequency domain (FD) as the height of the largest metabolite 
peak divided by the average (rms) amplitude of the noise in a 
signal-free part of the spectrum*, alternatively it can be based 
on signal area or, similarly, time domain amplitude vs. noise 
at the end of the FID. If frequency domain intensity is used, 
SNR depends inversely on linewidth. Low SNR can be 
remedied by choosing larger ROI’s, increased scan time or 
optimized hardware (local receive coil, higher field). As 
illustrated in Fig. 1, FD-SNR also depends on the acquisition 
time, real time filtering and of course apodization. While high 
frequency noise gives the impression of low SNR, it may be 
largely irrelevant for the precision of peak fitting with 
restrictions or prior knowledge on line widths. SNR is often 
used to discard bad spectra. However, as SNR is directly 
reflected in the error estimates obtained from model fitting 
(so-called Cramer Rao minimum variance bounds, CRMVB2) 
and CRMVB are more directly linked to confidence limits, a 
rejection criterion based on CRMVB’s for each metabolite 
seems more effective. SNR may be convenient when 
integrating well isolated peaks (e.g. CSI with long TE). 
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Fig. 1 Identical spectrum with different 
noise level: a) original; b) noise added;
c) same noise as b), but second half of 
FID replaced by zeroes. This changes 
visual appearance, but rather increases 
fitting errors (CRMVB). 

Linewidth/lineshape: Linewidth is usually defined independently of lineshape as the full width at half 
maximum peak height (FWHM) in FD. It determines the possible resolution of spectral features. If 
linewidths are estimated in model fitting they also influence the calculation of CRMVB’s. It appears 
                                                           
* In LC-Model 32, it is not signal vs. noise, but vs. rms of the residues. 
    

Abbreviations: Cho: cholines; Cr: creatines, CRMVB: Cramer Rao minimum variance bounds; CSF: cerebro-
spinal fluid; CSI: chemical shift imaging; FD: frequency domain; FID: free induction decay; Glx: glutamate + 
glutamine; mI; myo-inositol; NA: N-acetyl moieties; NAAG: N-acetylaspartylglutamate; RF: radio frequency; 
rms: root mean square; ROI: region of interest; σ, SD: standard deviation; σ2: variance; SNR: signal to noise 
ratio; SV: single voxel; TD: time domain; WS: water suppression 
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that linewidth is very critical for model fitting and bad resolution easily leads to meaningless results in 
short TE spectra. Rejection criteria based on FWHM are very 
useful for automatic screening of SV3 and CSI4 data. The effect 
of reduced resolution (and inherently lower intensity SNR) is 
illustrated in Fig. 2. It was recently found that reduced 
resolution and decreased SNR in combination with complicated 
baselines and possibly inaccurate fitting models can lead to 
systematic over- or under-estimation of low-concentration, but 
also prominent metabolites5;6, which in part will not be 
reflected in increased CRMVB7 (see below). Remedies for bad 
resolution include: better shimming (higher order shims, if 
available), smaller ROI size, moving ROI away from tissue 
interfaces. 
Errors and variability: Quantitative results must always be 
given with error estimates which can be taken as a measure of 
spectral quality to a certain extent. The stochastic error for a 
single measurement is reflected in the Cramer Rao minimum 
variance bounds (CRMVB)2;8 that include effects of the SNR 
and the inherent limits of fitting with a given model (including 
interdependence of fitting parameters and prior knowledge 
constraints). Hence, low CRMVB are good indicators of 
spectral quality. However, it is important to know that CRMVB 
are calculated under the premise that the fitting model is correct 
and complete8. Any systematic errors or artifacts are neglected 
and may lead to overoptimistic confidence limits. For the 
judgement of spectral quality in the context of a group of 
normal reference spectra, it is most useful to determine reproducibility. Reproducibility must be 
established locally and not be inferred from the literature. With regard to absolute quantitation in 
standard units, systematic errors are often substantial (e.g. inaccurate values for T1, T2, inaccuracies in 
reference measurements and calibrations, wrong baseline and lineshape models). The random errors, 
reflected in the reproducibility can be much smaller9 than systematic errors and should not be taken as 
a measure for the latter. The quantitative method with best reproducibility does by no means 
guarantee its results to be closest to the true values. However, best reproducibility guarantees most 
sensitive detection of pathology. 
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Fig. 2 PRESS spectra (TE 20ms) of the 
same gray matter ROI with intentionally 
varied shim quality, demonstrating the 
covariation of linewidth and CRMVB, 
primarily for the minor contributors. 

Quality of data and fitted values can be judged based on error estimates from CRMVB, confidence 
limits10, minimum χ2, and/or general reproducibility at the local site. For CSI data, these parameters 
can be mapped leading to confidence images10;11 or rejection masks4. 
 
Factors affecting spectral quality 
Motion: In SV MRS, repeated small gross motions or local pulsatile motion (cardiac related CSF 
pulsation, respiration) normally lead to increased linewidths, possibly reduced peak areas (phase 
cancellation)12 and decreased quality of water suppression. Single events of gross bulk motion will 
result in recording data from a wrong ROI. In the spectrum this may be evident by a doubling of all 
peaks (see Fig. 3). A post-acquisition correction is only possible, if all acquisitions were stored 
separately and if signals are present that allow for realignment and/or individual phasing. In CSI, 
motion leads to blurring13, evidenced if substantial metabolite signals are found outside the head.  
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Fig.3 Common artifacts: a) - d) spurious echo in a white matter spectrum from a neonate21. a) FID with delayed 
spurious echo visible; b) spectrum incl. “ghost”; c) “ghost” signal identified as a 2 pulse echo26; d) ghost 
eliminated by truncation to first half of FID. e) - f) Effect of head movements in a neonatal spectrum from 
thalamus21: e) all peaks doubled due to movement; f) perfect lineshape without motion in repeat scan. g) – h) 
Effect of eddy currents: g) lineshapes distorted due to eddy currents in a short TE PRESS spectrum of occipital 
gray matter in a 14 year old; h) lineshape restored using the phase information from a water reference scan. 

ROI location: The correct placement of the ROI should always be checked to avoid wrong diagnoses 
because of typing errors or patient movements. Control of data header information, acquisition of a 
ROI image and the repetition of scout images after the recording of the MR spectrum are advisable. 

Signal phase: The phase must be correct for visual inspection of the spectrum and good phasing may 
help to find the global minimum in fitting. Good phasing is not crucial for quantitative evaluation, if 
the phase is a variable in the fit, and the proper phase can usually be obtained from reference scans. 

Water suppression (WS): Poor WS is not very problematic, if the shape of the residual water signal is 
well-behaved and accounted for in data fitting and if there are no appreciable vibrational sidebands. 
Often WS pulses saturate parts of the spectrum and can influence the determination of mI in short TE 
MRS.  
Hardware problems: MRS may be first to be affected by failing hardware, as spectral quality and 
reproducibility depend strongly on optimal and constant hardware (shim, eddy currents, rf 
homogeneity and stability, amplifier linearity, external noise sources). Regular quality control5;14-16 
with phantom and volunteer scans is highly recommended. In particular, quantitation using the 
reciprocity principle relies heavily on constant receiver amplification and a linear RF amplifier. 
Hardware drifts during the scan can also lead to degraded spectral quality which can be remedied by 
inclusion of reference scans17. 
ROI shape: One should always have the real-world voxel profile18;19 in mind, when judging spectra 
from focal lesions. It is not a sharp cube and one should remember that it is drastically altered for 
incorrect B1 settings18. In CSI, the voxel size does not correspond to the ideal raw nominal size 
obtained by dividing field of view by number of phase steps. 
Assignments: Never trust automatic peak assignments for grossly abnormal or low quality spectra. 
Often lipid signal is labeled as lactate or alanine. Automatisms can lead to Cho being labeled as Cr, 
etc.  
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Gallery of Artifacts  
Artifact detection has not been automated and requires an experienced eye1. Some examples are 
presented in Fig. 3, others can be found under www.cx.unibe.ch/dkf1/amsm/MRS_artifacts. 

• Outer volume signal bleed: ROI selection pulses are not infinitely selective and will always excite 
spins outside the targeted ROI as well (particularly within an ROI width around the ROI, and 
especially if BB1 was not adjusted properly). As the out of volume signal will normally be only a 
small fraction of the proper signal from the ROI, this will not be relevant, unless the surrounding 
tissue provides much stronger signals (lipids). Often, the out of volume signal is characterized by 
a different phase than the signal from within the ROI. RF-phase cycling, however, will not reduce 
the artifact. Spatial saturation bands can effectively prevent these signals. 

• Outer volume ghosts: In 3-pulse spatial selection schemes (PRESS, STEAM) crusher gradient 
pulses are inserted to prevent refocusing of unwanted echoes or fids. Crusher gradient pulses work 
fine for homogeneous B0. If appreciable local gradients are present at tissue interfaces, they can 
cancel the effect of some of the crusher gradients and, hence, lead to refocusing of unwanted 
echoes within the acquisition window. Refocusing hardly ever is at the expected echo maximum 
and this leads to the typical appearance of outer volume ghosts, depicted in Fig. 3. Enhanced 
phase cycling can reduce these effects and if individual scans are saved, can be used to identify 
these ghost signals20. 

• Shifted echoes: Ill-adjusted tweaking gradients result in shifted echoes. This leads to reduced peak 
areas and/or telltale lineshapes that urgently call for gradient readjustments. 

• Eddy currents: Similarly, uncompensated eddy currents will lead to asymmetric lineshapes that 
are particularly striking for spectra with good resolution. Within certain limits, eddy current 
effects on lineshape can easily be corrected with the phase information from reference scans. On 
the down side, eddy current correction with inappropriate reference scans (recorded after patient 
moved, or containing substantial lipid signal in MRS outside the brain) introduces substantial 
sidebands. At longer TE, eddy currents also lead to signal drop in excess of the T2 decay (possibly 
location-dependent).  

• Inadequate model: Artifacts can often be detected in the fitting residuals. Unexpected features in 
the residuals could also be due to metabolites not included in the basis set. Automated detection of 
artifacts can be based on the size of χ2 in comparison to what it should be for random noise.  
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General Considerations  
To conclude, some potential guidelines to 
judge individual data sets: 

Criteria for rejection of data: Based on 
above statements, the literature and an 
opinion poll among colleagues, criteria for 
rejection of spectra or individual metabolite 
values can be formulated (see text box). 
Reproducibility: The achievable repro-
ducibility has been published for several 
methods and brain regions and can serve as 
indication of what is feasible, even though 
the results scatter considerably. The overall reproducibility is determined (additive variances σ2) by 
variability upon immediate repetition of a scan (σrep; closely related to CRMVB21), additional intra-
individual variability upon re-examination of the same subject in a subsequent scan (σintra)†, and inter-
individual variability (σinter). Ranges are given for NA, Cr, Cho, mI. 

Reject data if: 
• FWHM of metabolites > 0.07-0.1 ppm  
• CRMVB > 30-50% 
• unexplained features in residuals: reject, if artifact, 
or expand model, if unexpected metabolite 
• peaks doubled 
• lineshape strongly asymmetric after eddy correction 
• outer volume ghosts present (at least exclude 
metabolites overlaid with ghost) 
• out of phase signals present (possibly just exclude 
Lac and Ala, if it is lipid, confined below 1.6 ppm) 

                                                           
† 22

repintra σσ +  and 222
interrepintra σσσ ++ correspond to the total variability upon reexamination of single 

subjects and to the overall variability expected for a group of equivalent subjects, respectively. 

http://www.cx.unibe.ch/dkf1/amsm/MRS_artifacts
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σrep 3-22% 21, σrep 3-7% 22; 

σintra 1-4% 22, 22
repintra σσ +  4-7% 23, 22

repintra σσ +  4-8% 5; 22
repintra σσ +  4-12% (closely linked 

to CRMVB)24, 22
repintra σσ +  6-28% 25, 22

repintra σσ +  9-17% (Hippocampus)26, 

σinter 4-9% 23, 222
interrepintra σσσ ++  8-15% 5, 222

interrepintra σσσ ++  7-16% 27. 

Above values are for SV studies, similar numbers can be found for CSI data11;28-30. 

Choice of normal control data:  
Usually one tries to have a set of high 
quality spectra obtained from healthy 
subjects to serve as control data, the 
rationale being that one does not want to 
increase variability from the control 
cohort. This is reasonable as long as the 
measured quantity does not depend on the 
quality of the spectra. As mentioned 
above this is not always the case5-7. Fig. 4 
contains data obtained at different levels 
in medial frontal cortex in a group of 
healthy subjects. Using LCModel the NA 
content seemed to vary with the position 
in frontal cortex. However, careful 
analysis showed that the NA content depended on the spectral resolution which happened to be 
significantly different for the two locations. Analysis using a different program with different prior 
knowledge constraints revealed the apparent location dependence to be artifactual‡. Since patients are 
often less compliant or more restless than volunteers, control data can easily be of better quality than 
patient data. Straightforward comparison may show apparent metabolic differences that can be due to 
this systematic effect of line width. The example suggests that control data should match patient data 
in data quality, unless line width and/or SNR is taken as a covariate. Similar caveats apply to results 
recorded with spectral editing methods. Additionally, one should be aware that normal ranges, i.e. in 
particular the cohort SD, obtained from high quality control spectra may not be suited to judge 
normality of patient data deduced from spectra of inferior quality. 

  
Fig. 4: Results for fitting with 2 different programs and 
differing models and fitting constraints for NAtot (NAA + 
NAAG) as function of linewidth and location for 26 
spectra from medial frontal cortex. 7 

Criteria to define abnormality: A single metabolite level in a single spectrum from a single subject 
can be considered abnormal, if it lies outside the normal range defined by the mean ± 2 SD of the 
control cohort. Additionally, SNR and FWHM should also fall within normal limits. The control 
values must originate from truly comparable exams (ROI size, acquisition parameters, location, 
subject age, data quality). Given the reproducibility found in the literature, deviations from the norm 
must usually be at least 15%, possibly much more, depending on which metabolite is considered, 
one’s own reproducibility values, and ROI size. Smaller changes may be confirmed in repeated 
studies, but should still be judged against incidental individuality (σinter). In CSI studies, detection of 
abnormalities can be based on similar principles, but CSI also offers additional options. One 
possibility is to compare intraindividually with the contralateral side, others are to compare 
correlations with tissue content31.  
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‡ This example does by no means try to convey the claim of a general inferior performance of LCModel. In 
other circumstances TDFDfit showed similar behavior. The example only aims to show that spectral quality can 
influence numeric results. 
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